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FOREWORD 

It is the policy of the National  Aeronautics  and  Space  Administration to  employ,  in all formal 
publications, the  international  metric  units  known collectively as the  Systlme  Internationale d’Unit6s 
and designated SI in all languages. In  certain cases, however, utility requires that  other systems  of 
units  be  retained  in  addition to  the SI units. 

This document  contains  data so expressed  because the use of the SI equivalents  alone  would im- 
pair communication.  The non-SI units, given in parentheses  following  their  computed SI equivalents, 
are the basis  of the measurements  and  calculations reported here. 
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FINITE-ELEMENT MODELING STUDIES IN THE 
NORMAL-MODE METHOD AND NORMAL-MODE SYNTHESIS* 

by 
Roy Leon Courtney 

Goddurd  Spuce  Flight  Center 

CHAPTER 1 

INTRODUCTION 

1.1 Problem  Statement 

The  normal-mode  method of structural analysis has been  developed into a  powerful tool in the 
analysis of large and complex aerospace structures.  The value of  this  method lies in the  fact  that  the 
simultaneous  differential  equations  of motion which describe the linear dynamic  characteristic of a 
structure  are  decoupled  into  independent  differential  equations  when  the  displacements  are expressed 
in terms  of  the  normal modes. A normal  or  natural  mode of vibration  occurs  when  each point in the 
structure  executes  harmonic  motion  about  a  point of static  equilibrium,  with every point passing 
through  its  equilibrium  position at  the same instant  and reaching its maximum displacement at  the 
same instant.  The  form of the displacement of a structure is known as the normal-mode  shape,  and 
the  frequency of the harmonic  motion is known as the normal-mode  frequency.  Additionally,  normal- 
mode shapes and frequencies  are used to compute  the  modal  properties of generalized mass, stiffness, 
and structural  damping associated with the modes. 

There are basically two numerical  methods of approach to the problem of determining  the nor- 
mal modes of structural  systems: An exact problem  formulation solved approximately  and  an  approx- 
imate  formulation solved exactly.  For certain simple systems the  exact  solution  for normal  modes can 
be  obtained by analytical  methods. When it is impossible or very difficult to obtain  an  exact  solution 
of the partial  differential  equations governing a  vibrating  system, the system may be redefined in a dis- 
crete  form.  The structure is approximated  by  an assembly of discrete  structural  elements having an 
assumed distribution of stress  and  displacement.  The  complete  solution is obtained  by  combining 
these individual, approximate  stress and displacement  distributions in a  manner  that satisfies the  force 

*The information presented herein was submitted as a thesis in partial fulfillment of the requirements for the degree of Master of 
Science in  Engineering, The George  Washington University, Washington, D.C., August 1970. 
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equilibrium and displacement  compatibility  at  the  connection  between  elements.  Methods based on 
the discrete or finite-element  approximations involve appreciable quantities of linear algebra that  must 
be organized into a  systematic  sequence  of  operations,  which  are  handled  most  conveniently  by  the 
use of matrix algebra. The  formulation of a specific method of analysis in  matrix algebra is ideally 
suited for  solution  on  the digital computer, which can be programmed for systematic  compilation  of 
data and for  execution of required  operations. 

As mentioned above, normal-mode analysis of  structural  systems  has  been  the  subject  of  a  great 
deal of investigation, especially in the aerospace field, where the  dynamic response of efficient, light- 
weight structures is of paramount  interest.  The  National  Aeronautics  and Space Administration 
(NASA) prepared  a general review  and useful bibliography  of  normal-mode analysis.’ Application of 
this  method of analysis to space vehicles and  a  bibliography  of both analytical and applied references 
are presented  by 

Finite-element analysis of  complex  structures  requires large numbers of coordinates in the model, 
resulting in  equations so large as to overwhelm the  best  of  analysts  and  computers.  The  technique  of 
normal-mode synthesis is a process whereby the  dynamic  characteristics  of the several components of 
the  system are calculated  separately and then  brought  together to  evaluate the dynamic  characteristics 
of the  entire  system,  thereby increasing computer efficiency. 

Another  major advzntage of  the normal-mode-synthesis technique is that  the modal data  may 
come  from  such diverse sources as analytic  solutions,  finite-element analyses, and vibration tests de- 
signed to determine  normal modes. Thus, one  structural analysis using modal  synthesis can incorpo- 
rate  the representation of individual substructures  analyzed  by  completely  different  techniques  by 
separate engineering groups that may never have conferred about  the  complete  structure. 

The  concept  of  modal  synthesis is founded  on  the principle that a  substructure is completely  (or 
adequately)  represented  by  its  primary  modes; if this is true,  then  the  connections of these  substruc- 
tures  at  their interfaces  can  be described in  terms of the modal  quantities of the  components. A set of 
equations can be written  with  coordinates in terms  of  normal-mode  shapes  and  modal  factors  of the 
components. Solving these  equations  for  the  amplitude  factors  and  multiplying  by  the  component 
modes yields system modes. 

Several investigators have  developed complete  methods  of analysis by  substructures;  these  meth- 
ods  incorporate  the  concept  of  normal-mode synthesis. Gladwells developed the  branch mode  method 
of vibration analysis, which involves the imposition  of  a  sequence  of  constraints on  the system so that 
in  each  constrained  system or branch  only  a few adjoining components vibrate in modes, called branch 
modes.  These branch  modes and appropriate rigid-body modes are used in  a Rayleigh-Ritz analysis of 
the  complete  system. Craig  and Bampton6  extended  the  branch  mode  method to systems having 
highly redundant  substructure  boundaries. 

H ~ r t y ’ . ~  presented the  method of component-mode  synthesis,  in which the vibration  modes of 
the composite structure are  synthesized  from generalized coordinates  that are defined  by  a  finite num- 
ber of displacement  modes for each  component  structure.  These  displacement  modes are generated  in 
three categories: Rigid-body, “constraint”  modes,  and  “normal”  modes. 
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MacNealg devised a general solution to  the problem of representing  a part  of a structure  by  its 
vibration modes  when some  or all of its  connection  points to the rest of the  structure are restrained 
during  measurement or calculation of substructure modes. This  procedure is incorporated  in  the 
present study and presented  in  detail  in  the following chapter. 

Many computer programs have been  written to solve the myriad  structural  problems,  both specific 
and general, to which  finite-element theory can  be  applied. For example, NASA has  committed  a large 
amount of time,  funds,  and  manpower to create  a general-purpose computer program for  structural 
analysis called NASTRANlO (an acronym for NAsa STRuctural ANalysis). Although  demonstration 
problems involving normal-mode  modeling have  been solved, no extensive study of the normal-mode- 
synthesis  technique  has  been  performed  with  this computer program to date. 

In this  report  the basis of normal-mode analysis and normal-mode  synthesis is presented  and  mod- 
eling studies using finite  elements and modal  synthesis  for  structural  problems are evolved, performed 
on NASTRAN, and  compared to known  analytic  solutions  for  accuracy.  The  purpose of these  studies 
is threefold: 

(1) To compare the results of the normal-mode  solutions of structural  problems analyzed by 
finite-element and other  methods  for accuracy. 

(2) To develop guidelines for efficient  finite-element modeling so that required accuracies will 
result from  the analysis. 

(3) To investigate modeling  techniques in representing  a part of a structure  by  its  normal modes 
as implemented  on  a  structural-analysis computer program. 

1.2 Notation 

The letter symbols used in the present study are defined in the  text where  they  first  appear. For 
convenience they are listed  here  in  alphabetical  order.  Throughout the  text square  brackets, [ 1, de- 
note two-dimensional arrays and braces,{ } ,  indicate  column vectors." The  transpose  symbol, T, ap- 
pended to braces identifies  a row vector.  Subscripts are used with  matrix  notation to designate subsets 
of displacement  components. 

a = Subscript  denoting degrees of freedom. 

A = Cross-sectional area; dso accuracy. 

b = Subscript  denoting  restrained degrees of freedom; also generalized damping  factor. 

c = Subscript  denoting  connection  points; also angular constant. 

E = Modulus  of elasticity. 

{f} = Force. 

{ F }  = Force. 

*This is the matrix notation adopted by NASTRAN." 
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g = Damping factor. 

i = Subscript. 

I = Moment of inertia. 

J = Torsional  constant. 

k = Generalized stiffness. 

[ k ]  = Diagonal matrix of modal  coefficient. 

[K] = Structural  stiffness  matrix. 

I = Length. 

m = Subscript; also generalized mass. 

[m] = Diagonal matrix of modal  coefficient. 

[MI = Structural mass matrix. 

n = Subscript  denoting degrees of  freedom. 

N = Number of elements  in  model. 

p = Subscript  denoting physical points; also differential  operator. 

t = Time. 

T = Superscript  denoting  transpose of matrix. 

{ u }  = Displacement vector. 

x = Coordinate. 

y = Coordinate. 

z = Coordinate. 

/3 = Characteristic  number. 

5 = Auxiliary modal  coordinates. 

X = Eigenvalue. 

v = Poisson’s ratio. 

= Modal coordinates. 

p = Mass per unit length. 

4 = Characteristic  function. 

{ #} = Eigenvector. 
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[@I = Transformation  matrix  of eigenvectors. 

[$I = Transformation  matrix. 

w = Natural  frequency of a  vibration  mode. 
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CHAPTER 2 

METHOD OF ANALYSIS 

2.1 Normal-Mode Analysis 

In  the normal-mode or modal method  of  dynamic problem  formulation,  the  vibration  modes  of 
the  structure  in  a selected frequency range are used  as the degrees of freedom. Thus  the  number of 
degrees of  freedom is reduced while the accuracy in  the selected frequency range is maintained.  In  the 
direct  method,  the degrees of freedom are simply the displacements at connection  points  between 
substructures. 

The advantage of the normal-mode method lies in the  fact  that  the differential  equations of  mo- 
tion of the  structure are  decoupled  when the displacements  are expressed in  terms of the normal 
modes. Thus,  a structure  with n degrees of freedom may be expressed by n independent  differential 
equations  rather  than  by  a  system  of n simultaneous  differential  equations. 

The  modal  method of dynamic  problem  formulation is important  in maximization of computa- 
tional  efficiency in certain  types of problems. This method will usually be  more  efficient in problems 
where a small fraction of the  modes are sufficient to produce  the desired accuracy in the range of in- 
terest and where the stiffness  matrix used in the  direct  method is not well banded.  For  problems with- 
out  dynamic coupling,  i.e., for problems  in which the matrices of  the modal  formulation are diagonal, 
the  modal  method will frequently  be  more  efficient, even though  a large fraction of the  modes  are 
needed.1° 

The  results of a  normal-mode analysis of a part  of a  structural  system  modeled  by  finite  elements 
may  be combined  directly  with  modal data  obtained  from  other  sources to analyze the  entire system. 

2.2 Eigenvalue  Analysis 

Eigenvalue analysis yields  structural  vibration  modes  from  the  symmetric mass  and stiffness  mat- 
rices, [M,,] and [K,,], generated  by  static analysis. The eigenvectors and eigenvalues produced  by this 
analysis may be used to  generate  modal  coordinates for  further  dynamic analysis. 

The general form of the eigenvalue problem for vibration  modes is 

where {u,} is the displacement  vector  and the eigenvalues Xi = (.)i2 are the squares of the  natural fre- 
quencies. The results of  the calculation  are the eigenvalues and  corresponding eigenvectors, nor- 
malized so that  the largest element  of  each  eigenvector is unity. 
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The eigenvalue extraction  method used in  the  present  analysis is called the inverse  power  method 
with  shifts, a  particularly  effective  method of analysis for  problems  formulated  by  the  displacement 
approach when only  a  fraction of all of the eigenvalues are  required.  Section  10.4  of  Reference  10 
gives a  complete  description of the  theory  and  application of this  method as implemented  in 
NASTRAN. 

2.3 Normal-Mode Synthesis 

The  normal-mode  synthesis  technique in structural analysis  permits part of a  structure  to be de- 
scribed  by  its  orthogonal  vibration  modes.  In some instances  structural  information may not  be avail- 
able  in other  forms.  Thus, normal-mode  information  derived  from diverse sources,  including  vibration 
tests  and  other  analyses  such as energy methods and finite  elements, may be  combined  in  one  struc- 
tural  analysis.  Normal-mode  synthesis  has  been  found useful-  in many  practical  situations.* 

Section  14.1 of Reference 10 develops the modeling  technique  utilized in the  present  study, 
whereby a  part of a  structure is represented by its  vibrational  modes.  This  development is presented 
below for  completeness. 

Description of part of a  structure by vibration  modes  requires  knowledge of how the  connection 
points  between  parts of the  structure were supported  when  the  vibration  modes were measured or 
computed.  Three cases are  distinguished: 

(1) All connection  coordinates free. 

(2) All connection  coordinates  restrained. 

(3) Some  connection  coordinates  free  and  some  restrained. 

The  first  condition is usually  employed in vibration  tests  or  analyses of large parts.  Often  it is 
not possible to achieve effectively  unrestrained  test  conditions;  however,  unrestrained  conditions can 
be obtained  from  calculated  modes. 

2.3.1 Case 1 

For Case 1,  in  which the  substructure  modes  are  free  at all connection  coordinates,  the  required 
data  are  the  vibration  mode frequencies, ai, the  mode  shapes  or  eigenvectors, {q5i}, and the mass distri- 
bution of the  part, expressed by the mass matrix [M,]. The  eigenvectors  need not be  normalized  in 
any particular  manner.  Let  the  degrees of freedom  at the  points of connection to  the remainder of the 
structure  be  designated  by  the  vector {uc}. Then  the  motions of these  points are  related to  the modal 
coordinates, {ti}, of the  part  by 

The  columns of [@c,,] are the eigenvectors, {qhi}, abbreviated to include  only  the degrees of freedom  at 
the  connection  points, { uc}. The  usual  approximation of including  only  a  finite  number of eigenvectors 
in [@c,i] produces an idealized  model for  the  part  that is too stiff.  Specification of the  part is completed 
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by calculation of the generalized mass, mi, stiffness, ki, and damping, bi, associated with  each  modal 
coordinate, ti, as follows: 

mi = {@i)TIM,l {@i} 7 (3) 

and 
ki = w!mi , 

b. = g.miwi , 
1 1  

where gi is a  damping factor  for  the  ith mode.  Frequently gi will not  be accurately  known. 

The  equation  of  motion  for  the generalized coordinate, t j ,  is 

(mjp2 + bip + kilti = {$ci}T{fc} , (6) 

where p is the differential  operator, { f,} is the  vector  of forces  applied to the  substructure  at  the con- 
nection  points, and {@c i }  is the eigenvector {@i} abbreviated to include  only the degrees of freedom at 
connection  points. 

Equations (2) through (6) contain all of the  information  required to describe the  part. In the 
construction of the idealized model,  each  of the rows of  Equation (2) is regarded as an equation of 
constraint  between  a  constrained degree of  freedom, u,, and the generalized coordinates, { &}. The 
generalized mass, stiffness, and damping  elements  connected to ti are mi, ki, and bi, respectively. Fig- 
ure 1  illustrates the  interconnection of the  elements in diagrammatic  form. 

2.3.2 Cases 2 and 3 

The  derivation of an idealized model  for Cases 2 and 3, in which some or all  of the  connection 
points are restrained  during  measurement or calculation of the  substructure  modes, is considerably 
more involved. A general solution devised by Ma~Nea l ’ ,~~  is  developed below. 

Modal CONSTRAINTS Remainder 
o f  

Structure 

Structura l  
Coordinates 

(Uc) 

Figure I-Representation o f  a  part of a structure by its vibration  modes, Case 1 :  All 
connection  points are free  while  the  modes  are  calculated. 
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The objective of this analysis is to derive a  set  of relationships that  can be treated as equations of 
constraint  between  the  modal  coordinates  and  the degrees  of freedom at  connection  points  (both free 
and restrained). The  modal mass, damping,  and stiffness properties will be simulated by scalar struc- 
tural elements, as in Case 1. 

Let the degrees of freedom of the  substructure  be  partitioned  into {ua}, degrees of  freedom that 
are free in the  substructure  modes  and { ub}, degrees  of freedom  that  are restrained in  the  substructure 
modes, i.e., the  connection  points.  The  equations of motion  for  the  substructure  (without damping) 
can then be  written as 

where { f a }  and { f b }  are forces applied to  the  substructure.  The mass  of the  substructure is  assumed to 
be concentrated  at  the free coordinates, { ua}, which include all coordinates  not restrained in  the sub- 
structure modes.  Any  substructure mass on  the restrained coordinates, {ub},  should  be  lumped  into 
the remainder of the  structure because the masses on  the restrained coordinates  produce no effect dur- 
ing the vibration modes  of  the  substructure. They are, therefore, ignored in  the modal  representation 
of the  substructure.  The stiffness matrix is partitioned in Equation (7) according to free and restrained 
coordinates. Note  that {ua} contains  the  free  connection  coordinates as a subset. 

The  substructure  modal shapes are described by  a  modal  transformation  between  the free coor- 
dinates, {ua}, and  modal  coordinates, { E i } ,  by 

{u,) = [ @ a j l { E j }  . (8) 

The corresponding generalized forces on  the modal  coordinates are 

{&: = r @ a i l T { f a } .  (9) 

By virtue  of  the  orthogonality  property of vibration modes, 

[@ailTCKa, + [ki + mip21 , (10) 

where [ki]  and [mi] are diagonal matrices of the modal coefficients computed by  Equations (3) and 
(4). Now, if  we  use Equations (8), (9), and (10) to transform Equation (7), 

It is convenient to separate  the  inertia forces from  Equation (1 l), so that if we define 

{Z} = :fi> - Cm,Ib24) Y (12) 
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Equation  (1 3) is a  stiffness  equation in standard form. Placing ti on  the left-hand side leads  more 
directly to a  useful physical model: 

where 

and 

If the set of restrained points {ub} is nonredundant,  the  matrix [Kbb]  is null;  this  condition will 
be  assumed. The  matrix [$ ib]  is calculated  from  properties of the vibration  modes as follows: During 
a  vibration  mode, {ub} = 0, and the  vector of forces acting on the  constraints is, from  Equation  (14), 

{ F J  = -{fs> = [ $ i b l T { Q  = [$iblT[ki l{ t i :  . (17) 

We define [ K b i ]  to be  the  matrix of forces on  the  constraints  due to unit values of the  modal coordi- 
nates while the  substructure is vibrating in  its normal  modes: 

(Fb)  = [Kbi l {Ei} .  

Then, if we compare  Equations  (17)  and (18), 

[Gib ]  = [k i l - l [Kb i lT  , 

or, in other words, [Gib ]  is equal to [KbiIT,  with  each row divided by  the  appropriate  element of [ k i ] .  
We may also use [ $ I ~ ~ ]  to define an auxiliary set of modal  coordinates 

{ti} = [9 , I {uJ .  

@,= [k i l { t i  -si) . 
Then,  from  the  top half of  Equation (14), 

The  free  connection  coordinates { uc}  are a  subset of { uU}. The relation  between { uc} and  the 
modal  coordinates {ti} is 

{uc) = [@ci l {Ei>  9 

where [ @ c i ]  is the  appropriate  partition of [Gui1. 
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Equations  (12),  (20),  (21),  and  (22)  provide  a  complete  description  of  the  substructure.  They 
are also used to  construct  the idealized  model of the  substructure,  shown  in Figure 2. The  modal 
dampers, bj ,  are  placed  across the modal springs, k j ,  if they  simulate  structural  damping. If they simu- 
late  damping  due to  the viscosity of a  surrounding  fluid  environment,  they  should  be  placed  between 
the modal  coordinates  and  ground.  Equation  (20)  expresses  a  new  set  of  constraint  equations  between 
the  auxiliary  modal  coordinates and the degrees of freedom  that  are  restrained  in  substructure  modes. 

The  techniques discussed above  provide the  capability  for  the  complete  dynamic  partitioning  of  a 
structure, since all of the  parts,  rather  than  a few,  may be represented  by  their  respective  vibration 
modes.*  The general case diagrammed  in  Figure 2 is particularly  useful  for  this  purpose.  Consider,  for 
example, the missile structure shown in Figure 3. The missile is physically  partitioned  with  support 
conditions  for  the  calculation  of  uncoupled  vibration  modes, as shown  in  the figure. The  first  parti- 
tion,  (a), is  unsupported, while the  others are  cantilevered.  The  lumped-element  model  for  the  com- 
posite  system  consists of parts  with  the  form of Figure  2  connected  in  tandem. It is evident  from  the 
form  of the lumped-elemqnt  model that  the  independent  degrees  of  freedom  consist of the  modal 
coordinates { E a } ,   { E b } ,   { E c } ,  etc.  The  displacement  sets { u ~ , ~ } ,  { E b } ,  { u ~ , ~ } ,  etc.,  are all constrained.  The 
dynamic  equations, when written by the  stiffness  method, are  banded  with  bandwidths  equal to  the 
number of modal  coordinates in three successive partitions. 

The  analyst  should be cautioned against an uncritical use of dynamic  partitioning  techniques. 
Use of a smaller  number of modes as degrees of freedom to represent  a  dynamical  system always re- 
sults  in  a loss of mass, a loss of flexibility,  or  both.  Procedures have been  developed9*”  for  incorpo- 
rating  the  “residual mass” or  the “residual  flexibility”  into  the  analysis  with  substantial  increase in 
accuracy.  In  general,  however,  established  techniques for  truncating  the  modes of a  complete  system 
do  not  automatically give good results when applied to substructures. 

c 

Structura l  
Coordinates 

(Uc) 

c 

. Coordinates 
Structura l  

(Ub)  

Figure  2-Representation of a part  of a  structure by its  vibration modes, Cases 2 
and 3: Some  connection  points are free and  some are  rigidly  constrained. 
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M i s s i l e   s t r u c t u r e ,   u n p a r t l t i o n e d  

Support  conditions f o r  p a r t i t i o n s   w h i l e   c a l c u l a t i n g   s u b s t r u c t u r e  
v i b r a t i o n  modes. 

- ( a )   ( b )  -I 

Por t ion  o f  composite model 

Figure  3-Dynamic  partitioning of missile structure. 
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CHAPTER 3 

MODELING  STUDIES 

3.1 General 

The  theory of normal-mode analysis and normal-mode  synthesis  presented in the previous chapter 
is applied in this chapter to studies in problem  formulation, i.e., modeling  technique,  for  these  two 
methods  of  structural analysis. Structural  problems  for which known  analytic  solutions  exist are de- 
fined  and  modeled by finite  elements.  The results of  the normal-mode analysis are  directly  incorpo- 
rated  in  the modeling  studies of the normal-mode-synthesis technique.  The analysis of these results is 
presented in the  next  chapter. 

3.2 Normal-Mode Modeling Study 

3.2.1 Description 

The  structural  problem  chosen to compare  the accuracy of solutions  obtained by different  meth- 
ods is the  determination of the normal  modes  of  vibration of a  constant-property beam with various 
end  conditions.  Vibration transverse to the axis of the beam  is considered  in  only  one  plane. Damp- 
ing and axial vibration are neglected. 

The  analytic method  for  the  determination of the  natural  frequencies  and  modes of vibration of a 
beam  and a  detailed  derivation of the corresponding  characteristic  functions are given in  standard 
texts12913 on  structural dynamics.  Young  and Felgar14 tabulated  the  solution  of  the characteristic 
functions  of  this  problem,  with  vibrations governed  by the well known  differential  equation 

a4y a2Y 

ax4 at2 
EI- - p-= 0, 

where x and y are the  coordinates parallel and  perpendicular, respectively, to the longitudinal axis of 
the  beam; t is time; E is  the  modulus  of elasticity; I is the  moment of inertia; and p is the mass per 
unit  length of the beam. Each of the  functions  for a given  beam satisfies the differential equation 

and also satisfies the boundary  conditions  corresponding to the end  conditions  of  the  beam.  In 
Equation (24) P, is the characteristic  number  and @,(x> is the characteristic  function  for  each 

15 
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type of  beam. The  natural  circular  frequency of the  nth  mode  of vibration of the beam, a,, is 
given by 

where I is the length of the beam. These results  are assumed to be the  “known”  solution to which the 
finite-element  results  are  compared for accuracy. 

The general type of finite  element used to represent the beam in  this  study is a  bar  element  that 
undergoes  extension,  torsion,  bending  in  two  perpendicular  planes,  and the associated shears. The 
restrictive assumptions for  this  element are that  it is straight  and  unloaded  except at its  end  and that 
its  properties  are  uniform  from  end to end.  The  stiffness matrix of the  bar element is a 12 X 12  matrix 
of coefficients that express the forces and moments  acting  on  the six degrees of  freedom (three trans- 
lations and three  rotations) at each of its  two ends.  Figure 4 shows a  representation of the  bar ele- 
ment,  its  coordinate  system,  and  its degrees of freedom. A lumped-mass  distribution is applied  in the 
development  of the mass matrix  of  the element.  The  specific  element used in  the present  modeling 
study is identified  in the NASTRAN computer program  by the  mnemonic, CBAR, denoting  the “con- 
nection,  bar,”  element.  Section  5.2 of Reference 10 presents the detailed  analytic  description of this 
finite  element. 

The  uniform beam is represented  by four  different  finite-element  models consisting of 5, 10, 20, 
and 40 elements, respectively, to ascertain the  effect of the  number  of elements upon  the accuracy of 
results. For ease in  correlation  of  finite-element and differential  equation  results, beam properties 
were chosen to reduce to 1 the value of  the  terms within the radical in the second expression for w in 
Equation  (25). Figure 5 shows the  four beam models.  Thus, the  natural  frequency in radians per sec- 
ond of the  nth  mode resulting  from the eigenvalue analysis of  the finite-element  formulation is directly 

comparable to  the term (/3,O2 of Equation  (25) as 
tabulated  in  Reference  14  for various beam types. 

Free,  supported, and  clamped  beam  end con- 
ditions  are  combined to obtain six different  types 
of  beams: (1) Free-free, (2) free-supported, (3) 
free-clamped, (4) supported-supported,  (5) 
supported-clamped,  and (6) clamped-clamped. 

X Y 

3.2.2 Implementation 

The  normal-mode  modeling study is imple- 
mented  on  the NASTRAN computer program. 
NASTRAN embodies  a  lumped-element  approach, 

R = Rotation whereby the  distributed physical properties of a 
T = Translation structure are  represented  by  a  model  consisting of 

a  finite  number  of idealized substructures or ele- 
Figure 4-Bar element. ments  that are  interconnected at a  finite  number 
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40 ELEMENTS 

Figure  5-Four  finite-element  models  of  a  beam. 

of grid points, to which  loads  are  applied. All in- 
put and output  pertain to the idealized structural 
model. 

The  structural  problem is defined by encod- 
ing the required  information  on  punch  cards ac- 
cording to prescribed formats given in  Reference 
15. For the present study,  the following informa- 
tion is required:  Coordinate-system  definition, 
grid-point  definition,  elements  connected  between 
grid points, cross-sectional and  material  properties, 
constraints  on  ends  of  the  beam, and method of 
eigenvalue extraction. 

The  problem thus defined  undergoes eigen- 
value analysis, which computes  the following for 
each of the  modes  analyzed: Eigenvalue, eigenvec- 
tor normalized to  the maximum displacement,  nat- 
ural frequency in radians  per second  and cycles per 
second, generalized stiffness, and generalized mass. 

In Chapter 4, the  natural  frequency resulting from  the  finite-element,  normal-mode analysis is 
compared for accuracy to the  known  solution. The eigenvector and generalized properties  of  each 
mode  are used in the following modeling  studies involving normal-mode  synthesis. 

3.3 Normal-Mode-Synthesis  Modeling  Study 

3.3.1 General 

The  results of the normal-mode analysis provides a basis for  solution of the following problems 
by synthesis of the normal  modes of the  constituent  parts, i.e., by representing  a part  of a structure  by 
its  vibration modes. The eigenvectors and generalized properties of the first i modes  of  the beam with 
free-free end  conditions are used in the application of the  theory developed for  normal-mode  synthesis 
in Section  2.3.1. 

3.3.2 SingleComponent  Structure 

The  structural  problem  chosen to demonstrate  the  synthesis  of  normal  modes  and to investigate 
the  accuracy of the  technique is the  determination of the normal  modes of a  uniform cantilevered 
beam, i.e., a beam with fixed-free end  conditions.  The beam consists of a single component modeled 
by the modal  properties of a beam with free-free end  conditions.  The  first i free-free normal  modes 
are selected to model  the beam,  where i must  include the first two  modes  that are rigid-body modes. 
The generalized stiffness given by  Equation (4) is zero for rigid-body modes since the  natural fre- 
quency is zero. The various values of i selected include the  two rigid-body modes  plus  arbitrarily se- 
lected flexible modes. The  source  of the  modal  information is the  four finite-element  models used in 
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the normal-mode analysis of Section 3.2, which consisted of 5, 10, 20, and 40 elements, respectively. 
Thus, for example, in the 10-element model the first i  modes  were used, where i = 3, 5, 7, 9, and 11. 
The following chapter  presents  the numerical results and  compares  them to known  solutions  for  the 
modes of the cantilevered beam. 

Implementation of the normal-mode synthesis on  the NASTRAN  program requires the declara- 
tion of the following for each  mode used to model the  structural  part: (1) Scalar point, which is a 
poiilt in vector space at which one degree of  freedom is defined, (2) scalar mass and stiffness connec- 
tion  elements  whose values are  the generalized mass and stiffness, and (3) the  coefficients of the ma- 
tric [4,i] of Equation (2), the  columns  of which are the eigenvectors of the  ith  mode,  truncated to in- 
clude only the degrees of freedom  at  the  connection  points.  The scalar points become the generalized 
coordinates  and degrees of  freedom  for  the analysis. The  relationship given by  Equation (2) is declared 
in NASTRAN by  a multipoint  constraint  equation. 

Simulation of restrained end  conditions of the beam is most easily accomplished by  the connec- 
tion of a spring of  very  large spring constant, e.g., 10l2 N/m (1O'O lb/in.),*  at  the  connection  points 
between  ground  and the restrained degrees  of freedom. Figure 6 shows  a  representation of the model 
used for  normal-mode  synthesis of a single cantilevered beam. 

3.3.3 MultipleComponent  Structures 

The  modeling  techniques described for  a single-component structure are extended to  structures 
with multiple components. In each problem  formulation,  the required modal  information  for each 
substructure is identical to  that required in the preceding structure. Boundary  conditions  of  the 
multiple-substructure  problem are handled in the same  manner as the end conditions of  a single- 
element cantilever beam.  Connections  between adjoining substructures are made  by declaring a scalar 

Modal Coordinates 
Iri t 

Figure  6-Representation of the  model  for  normal-mode synthesis of a 
single cantilevered  beam. 

*The  quantity  that  appears  in  parentheses in the  text is the value that was used in  the  modeling  study. 
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spring element  with  a very large spring  constant  between  appropriate  translational and rotational de- 
grees of freedom. 

Structural  normal  modes are obtained  by  the normal-mode-synthesis technique as applied to the 
following structures,  each divided into  more  than  one  substructure:  (1)  Three beams in series, canti- 
levered, (2)  three beams  in parallel, cantilevered,  and (3) three beams in a  portal arch. Figure 7 shows 
sketches of these  structures.  The  next  chapter  presents  the  comparison  of  the results of  the modeling 
study and the  known  solution as given  by Equation  (25)  for  the  first and second  structures  and  by  a 
120finite-element  model  for  the  third  structure. 

(a) Three beams in series, cantilevered. 

(b) Three beams in  parallel,  cantilevered. 

(c) Three beams in  a  portal arch. 

Figure  7-Multiple-component  structuresmod- 
eled by normal-mode synthesis. 
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CHAPTER 4 

ANALYSIS OF MODELING  STUDIES 

4.1 General 

This  chapter  presents  the analysis and  numerical  results of the modeling  studies  described  in the 
preceding  chapter.  These  studies are  implemented  on  the NASTRAN computer program, Release 1 1.1 , 
which is operational on  the IBM System  360/95  at  Goddard Space  Flight  Center. 

4.2 Normal-Mode Analysis 

Values and  units  for  the parameters  required  for the finite-element  models  described  in  Section 
3.2  are  chosen as follows: * 

Modulus  of  elasticity, E = 6.9 X 10l1 N/m2 (lo8 lb/in.2). 

Poisson's ratio, v = 0.3. 

Mass per  unit  length, p = 6.9 X lo3 N-sec2/m2 (1 .O lb-sec2/in.2). 

Area moments  of  inertia, 11,2 = 41.6 cm4 (1 .O in.4). 
Cross-sectional area, A = 6.5  cm2 (1 .O in.2). 

Torsional constant, J = 41.6 cm4 (1 .O in.4). 

Length, I = 254 cm (1 00 in.). 

Thus, the  four models of the uniform  beam consist of 5 ,  10,  20,  and  40 bar  elements,  whose ele- 
mental  lengths  are 50.8, 25.4,  12.7,  and  6.4 cm (20,  10, 5 ,  and 2.5 in.)," respectively (Figure 5). As 
previously stated,  this choice of parameter values permits  direct  comparison  of the results  of the eigen- 
value analysis with  those  tabulated  in Reference  14. 

The  complete  matrix of problems  studied consists of  the  four finite-element  models solved for 
each of  the six end  conditions: (1) Free-free, (2)  free-supported,  (3)  free-clamped, (4) supported- 
supported, ( 5 )  supported-clamped,  and  (6)  clamped-clamped.  Appendix A records the numerical re- 
sults of  the eigenvalue analyses for  these six  end  conditions.  Recorded data include- 

(1) Mode number, i = 1,2,  3 , .  . . 20. 
(2)  Natural  circular  frequency  of  the ith mode  of  vibration  of the beam in radians  per  second for 

the  known  solution given in  Reference 14. 

*The  quantities  that appear  in parentheses in the  text, and  the value of Poisson's ratio, are the  exact values that  were used  in the 
modeling  study. 
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(3) Accuracy, A ,  defined as the  ratio of the finite-element solution to  the  known  solution. This 
definition  of accuracy shall be maintained throughout  the analysis of results. 

In general, if n is the  number of unrestrained,  independent degrees of  freedom  of  the  problem, 
then n normal  modes  exist.  For  example, six  grid points are required to  model  the 5-element beam. 
For  the free-free type beam, n = 6. These consist of two rigid-body modes  and  four  flexible  modes. 
Supporting  one  end  of  the  beam reduces n by one  and results in  one rigid-body mode  and  four flexible 
modes.  Clamping one  end  prohibits rigid-body motion. In Appendix A, only flexible modes are re- 
corded. 

Figure 8 ,  a representative of the  data recorded for  the six end  conditions,  shows  the  normal-mode 
results for  modes  1 , 2, 3, 4, 5, 9, and 15 of the free-free type of  beam. The  coordinates  of the figure 
are the  number of  finite  elements in the model, N ,  versus the  accuracy, A ,  of  modal  frequency, de- 
fined above. In general, accuracy approaches  1.0  asymptotically  from  below as the  number of  ele- 
ments increases. The  plot passes through  the origin, since zero  finite  elements result in zero accuracy. 
This relationship is expressed by 

N = tan [ A f ( i ,  c)] , (26 )  

where N is the  number of  elements in the model, f(i, c) is a  function of the  mode  number, i, and c is 
an angular constant. 

Equation (26 )  can  be  used to estimate  the  number of finite  elements required to model  the beam 
for selected values of  mode  number, i, desired minimum accuracy, A ,  and  beam  end  conditions. For 
example, for  the beam  with free-free end  conditions,  when 

N > i + 2 ,   ( 2 7 )  

these parameters determined by curve-fitting the empirical data  are  defined as 

and 
f(i, c) = c + i 

c = 87.7 deg . 

For A = 0.90 and i = 2, Equation ( 2 6 )  yields N = 6.1 ; when  rounded to  the  next highest integer, 
N = 7.  This estimate is verified by Figure 8. 

A comparison of accuracies for  both  mode  numbers  and finite-element models as recorded in 
Appendix A reveals a general trend in the accuracy of the finite-element solution.  For  a specific mode 
number  or  for  a specific number  of  finite elements in  the beam  model,  a  reduction in the degrees of 
freedom at  the ends of the beam  results in increased accuracy of the  solution. This observation is ex- 
plained by the fact that a decrease in  freedom of the  structure  at  the  boundary requires a given num- 
ber of elements to describe less complex displacements in the eigenvector, i.e., less difference in the 
end displacements of individual elements. Therefore,  Equations (26) ,   (27) ,  and (28) ,  when applied to 
beams with increased end  fixity,  represent overestimates of the minimum number of  elements  that will 
yield specified accuracies in the eigenvalue solution. 
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Figure 8-Results of  normal-mode analysis of  a beam with free-free end 
conditions. 

4.3 Normal-Mode Synthesis 

4.3.1 Single-Component Structure 

Numerical results of the single-component  problem discussed in Section 3.3 .2  are tabulated  in 
Appendix B,  Tables B1 through B4. They  correspond to the 5 ,  lo-, 20-, and 40-element  beam  mod- 
els, respectively, used  as sources of the  substructure  normal  modes.  The  normal  modes are computed 
for free-free end  conditions.  The  first i modes are used to model the  substructure.  Data  recorded in 
Tables B l  through B4 include the  number of normal  modes, i, used to synthesize the model, the 
known  solution,  and  the  accuracy, A ,  of the modal  frequency  defined as the  ratio of the synthesized 
result to the  known  solution,  as  in  the  normal-mode analysis. 

Representative data are shown  in  Figure  9a, which plots i versus A for  the first,  second,  third, and 
fifth  model  frequencies  of the uniform cantilevered beam.  Curves are included for  the normal-mode 
source  beams  consisting  of 5 ,  10, 20, and 40 elements. 

Figure 9b shows the  effect of varying i to represent  a  substructure  in  a plot  of i versus A for 
modal data recorded in Table B3, i.e., only for  the normal-mode  source  model  consisting  of 20 finite 
elements. 

The following generalizations are drawn  from  the  recorded  and  plotted  data  for  this  structure 
modeled by component modes: 
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(a) Cantilevered  beam  modeled by free-free  modes  computed from source beams containing 
5, 10, 20, and 40 elements  (Tables 61 through 64) .  
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(b) Cantilevered  beam  modeled  by  free-free  modes  computed  from a 2Gelement source  beam 
(Table 63) .  

Figure 9-Results of normal-mode synthesis of a  single-component  structure. 
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(1) There is nearly constant accuracy in model  frequency for  the i - 2  modes  where the first i 
normal  modes are used to represent the  substructure. 

(2) Accuracy of  modes i and i - 1 are extremely poor, i.e., inaccurate  by  more  than an order of 
magnitude. 

(3) For  the minimum number of synthesized  normal  modes used to model the  substructure,  best 
accuracy for  a specific normal  mode, i', of  the  structure is obtained  when i = if + 2. Thus, for  a spe- 
cific i', a  nontruncated  set  of  normal  modes  represents  a  substructure  more  accurately  than  does  a 
truncated  set  of modes. 

4.3.2 Multiple-Component Structures 

The several problems  described in Section 3.3.3 exercise the normal-mode-synthesis technique  for 
structures  with  more  than  one  separable  substructure. 

Each structure is composed  of  three  uniform beams previously discussed and analyzed by  the 
normal-mode  method.  Each component beam is represented  by the first 12 normal  modes, i.e., two 
rigid-body modes  and 10 flexible  modes  evaluated by the  40-element beam analysis for free-free end 
conditions.  The  40-element  source beam produces the most  accurate results, therefore  it is used to 
minimize error in the  component modes.  Stiffness  connection  elements, Le., springs with very large 
spring constants, are used to couple  the degrees of freedom of the  substructures  that are unrestrained 
when  their  normal  modes are computed. Similarly, these  fictitious springs provide the means to fix 
boundary  conditions  by  connecting  the  appropriate degrees of  freedom to ground. 

The  first structure  studied is a  cantilevered beam  whose length is 31, composed of three  uniform 
segments, each 1 in  length, in series (see Figure 7).  Substitution of 31 for 1 in  Equation  (25) yields the 

normal-mode-synthesis  results as a  function of the  number of modes, i, used to model  each component. 
Figure 10 shows these  data  plotted as i versus A for  representative  normal  modes of the  complete 
structure.  The curves approach an accuracy  of 1 .O asymptotically  from above as the  number of nor- 
mal modes  synthesized for  the  substructures increases. The accuracy of the synthesized-structure 
modal  frequency varies over  a  narrow range of values for modes  numbered  from 1 to nearly 2i. For 
example,  when seven modes  are used to model  each  substructure,  accuracy of the model  frequency 
varies between  1.07 and 1.16  for all the  structural  modes numbered  from 1 to 15.  The  model  frequen- 
cies are inaccurate  by  an  order of magnitude  for  structural  modes  greater  than 2i. As i increases, the 
range of values for A narrows  and  approaches  1.0.  Reasonable engineering accuracy, e.g., within 10 
percent,  is  obtained by use of a  moderate  number of component modes  in the model. For example, 
10-percent  accuracy is obtained  in  the first  mode  when i = 6 and in the second  mode when i = 7. When 
i = 12, all of  the first 20 modes  of  the  structure are computed  with less than 10-percent  error. 

-L known  solution  for  modal  frequency.  Table B5 presents the  known  solutions and the accuracy, A ,  of 

For  the second structure,  three parallel beams are fixed at  one  end and  connected  at  the  other. 
Table B6  gives data similar to that  for  the preceding  structure.  The  known  solution is the same as that 
for  the single cantilevered  beam, since the 3's cancel in  the  numerator and denominator  of  the  term 
within the radical of Equation (25) .  Connections  between  components are made  by the  technique 
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ACCURACY,  A, OF NORMAL-MODE FREQUENCY 

Figure  IO-Results of normal-mode synthesis of a multiple-component structure,  three uniform beams in parallel, 
cantilevered. 

I. 

discussed for  the previous structure. Normal-mode synthesis yields three  computed  modes  correspond- 
ing to each  mode of a single cantilevered beam.  In the first  synthesized mode all three parallel beams 
move in the same characteristic  mode.  In  each of the  other  two synthesized  modes, two beams move 
in the same cantilevered mode, while the  third parallel beam takes  a  different  mode  shape.  Good accu- 
racy in  modal  frequency is obtained  for  structural  modes  in which each of the  three  components  are 
characterized by the same substructure  mode.  This  problem  formulation  demonstrates  the  ability of 
the  synthesis  technique to determine  modes of the  complete  structure, which cannot  be  obtained  from 
a simple combination of modes of the substructures. 

The  third  structure is a  three-member  portal  frame  chosen to  demonstrate  the  interconnection 
between  substructures. Here the  fictitious springs connect  the  appropriate degrees of freedom (see 
Figure 7). Rotations  at  the  ends of adjoining beams are  connected to maintain  continuity of displace- 
ment  between  substructures. Transverse displacements at  the  top of the  two vertical-support beams 
are  connected, since longitudinal  extension  of the  horizontal beam  is neglected.  Table B7 tabulates 
the following data  for  this  structure:  The  known  solution  for normal  modes, the  mode  number and 
type  with respect to symmetry, and the accuracy, A ,  of the normal-mode-synthesis  technique.  The 
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results of a  finite-element,  normal-mode analysis are assumed to be  the  known solutions.  This  model 
consists of 40 bar elements for each of the  three  constituent beams. Accuracy is poor  for  the first 
symmetric and antisymmetric  modes, i.e., approximately 55  percent  error. However, accuracy im- 
proves with higher mode  numbers. 
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CHAPTER 5 

CONCLUSIONS 

In  this  report,  the bases in finite-element analysis of  the normal-mode method and the normal- 
mode-synthesis technique were presented and their  features  and  applications were discussed. A normal- 
mode modeling study  of  a  uniform beam resulted in guidelines for prediction  of accuracy in analysis 
compared to a  known  solution  for  the  problem. Modal data  from  this modeling study were  used to 
represent  substructures  in  a  modeling  study  of  the  normal-mode  synthesis.  One  single-component 
structure and three  multiple-component  structures  demonstrated  normal-mode  synthesis and its mod- 
eling techniques as implemented on NASTRAN, a  structural analysis computer program. 

The  limited  examples  treated in the present  study are intended to investigate accuracy obtained 
by the analyses and to demonstrate  the  application of these  techniques  on  a generally available com- 
puter program.  Accuracy guidelines can be  applied  judiciously to similar structures, e.g., tapered 
beams. Though  normal  modes may be  synthesized  from  many diverse sources, the analyst  should  be 
cautioned to use extreme care in  dynamic  partitioning  techniques, especially when truncating  the 
modes used to represent  a  substructure. 

The selection of an adequate  number  of finite  elements  needed to model  a  structure  yields good 
accuracy in the  solution  obtained by normal-mode analysis. The  synthesis of components  represented 
by their  normal  modes yields more  accurate results for  the  entire Structure  when the  component 
modes are characteristic of the modal  contribution of the  substructure  than  when  these  modes are not 
characteristic  of  the  modal  contributions. Further  study of the reason for  the less accurate  resuits 
may lead to a better understanding of the general applications and limitations of normal-mode synthesis. 
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Appendix A 

Numerical Results of Normal-Mode Analysis 

Appendix A presents the numerical results of the normal-mode analysis of a uniform beam for 
the following end  conditions: 

( 1 ) Free-free (Table Al )  

(2) Free-supported  (Table  A2) 

(3) Free-clamped (Table  A3) 

(4) Supported-supported  (Table  A4) 

(5) Supported-clamped  (Table  A5) 

(6) Clamped-clamped (Table  A6) 

In  Appendices A and B the accuracy, A ,  is defined as the  ratio  of  the finite-element solution to 
the  known  solution.  In  Appendix A, N denotes  the  number  of  bar  elements used to model the  uniform 
beam. 
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Table A  1 -Uniform beam with  free-free end conditions. 

Mode 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

- 
Frequency 
of known 
solution 
(rad/sec) 

22.373 
61.673 

_ _ .  

1  20.90 
199.86 
298.56 
416.99 
555.16 
713.08 
890.73 

1088.1 
1305.3 
1542.1 
1798.7 
2075.1 
2371.2 
2687.0 
3022.6 
3377.9 
3752.9 
4147.7 
" - " 

N =  5 

0.893 
.838 
.796 
.734 

.- - . 

Accuracy, A 

N =  10 

0.970 
.951 
.933 
.916 
.900 
.883 
.857 
.815 
.743 

N =  20 

0.992 
.987 
.982 
.977 
.972 
.967 
.962 
.957 
.95  1 
.945 
.939 
.930 
.919 
.905 
.886 
.860 
.826 
.783 
.730 

__ 

N =  40 

0.998 
-997 
.995 
.994 
.993 
.992 
.990 
.989 
.988 
.986 
.985 
.983 
.982 
.980 
.979 
.977 
.975 
.973 
.97 1 
.969 



Mode 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Table A2-Uniform  beam with  free-supported  end  conditions. 

Frequency 
of known 
soh  tion 
(rad/sec) 

15.418 
49.96  5 

104.25 
178.27 
272.03 
385.53 
5 18.77 
671.75 
844.47 

1036.9 
1249.1 
1481.1 
1732.7 
2004.1 
2295.3 
2606.2 
2936.8 
3 287.2 
3657.3 
4047.1 

N =  5 

0.95  1 
.916 
.882 
.815 

Accuracy, A 

N =  10 

0.987 
.977 
,967 
.957 
.945 
.930 
.905 
.860 
.783 

N =  20 

0.997 
.994 
.992 
.989 
.986 
.983 
.980 
.977 
.973 
.969 
.963 
.955 
.945 
.93 1 
.911 
.884 
.849 
.803 
.749 

~ 

N =  40 

0.999 
.999 
.998 
.997 
.997 
.996 
.995 
.995 
.994 
.993 
.992 
.99 1 
.99 1 
.990 
.989 
.987 
.986 
.985 
.984 
.983 
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Table  A3-Uniform beam with free-clamped end  conditions. 

Mode 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Frequency 
of known 
solution 
(rad/sec) 

3.5160 
22.034 
6 1.697 

120.90 
1 99.86 
298.56 
416.99 
555.16 
713.08 
890.73 

1088.1 
1305.2 
1542.1 
1798.7 
2075.1 
2371.2 
2687.0 
3022.6 
3377.9 
3752.9 

N =  5 

0.982 
.94 1 
.907 
.863 
.766 

Accuracy, A 

N =  10 

0.995 
.984 
.974 
.964 
.954 
.94 1 
.922 
.890 
.835 
.749 

N =  20 

0.999 
.996 
.993 
.99 1 
.988 
.986 
.982 
.980 
.976 
.972 
.967 
.960 
.952 
.940 
.923 
.900 
.87 1 
.833 
.786 
.73 1 

N =  40 

1 .ooo 
0.999 
0.998 
0.998 
0.997 
0.996 
0.996 
0.995 
0.994 
0.994 
0.993 
0.992 
0.991 
0.990 
0.989 
0.988 
0.987 
0.986 
0.984 
0.982 
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Mode 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Table A4-Uniform beam with  supported-supported  end  conditions. 

Frequency 
of known 
solution 
(rad/sec) 

9.8696 
39.478 
88.826 

157.91 
246.74 
355.30 
483.61 
63  1.65 
799.44 
986.96 

1194.2 
1421.2 
1668.0 
1934.4 
2220.7 
2526.6 
2852.3 
3  197.7 
3562.9 
3947.8 

N = 5  

0.999 
.997 
.98  1 
.909 

Accuracy, A 
~~ 

N =  IC 

0.999 
.999 
.999 
.997 
.993 
.98  1 
.957 
.909 
.825 

~ 

N =  20 

1 .ooo 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.998 
0.996 
0.993 
0.988 
0.98 1 
0.97 1 
0.97 1 
0.937 
0.909 
0.872 
0.825 
0.768 

N =  40 

1 .ooo 
1 .ooo 
1 .ooo 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.998 
0.998 
0.997 
0.995 
0.994 
0.993 
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Table AS-Uniform beam with  supported-clamped end conditions. 

Mode 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Frequency 
of known 
solution 
(rad/sec) 

15.418 
49.965 

104.25 
178.27 
272.03 
385.53 
5 18.77 
67  1.75 
844.47 

1036.9 
1249.1 
1481.1 
1732.7 
2004.1 
2295.3 
2606.2 
2936.8 
3287.2 
3657.3 
4047.1 

N = 5  

0.999 
.994 
.963 
.852 

Accuracy, A 

N =  10 

1.000 
1 .ooo 
0.999 
0.996 
0.989 
0.973 
0.94  1 
0.882 
0.789 

~~ 

N =  20 

1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
0.999 
0.998 
0.998 
0.997 
0.995 
0.99 1 
0.986 
0.978 
0.966 
0.949 
0.927 
0.896 
0.856 
0.807 
0.749 

N =  40 

1.000 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.999 
0.998 
0.998 
0.997 
0.996 
0.995 
0.994 
0.992 
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Table  A6-Uniform beam with clamped-clamped end conditions. 

Mode 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Frequency 
of known 
solution 
(rad/sec) 

22.373 
6 1.673 

120.90 
199.86 
298.56 
416.99 
555.16 
7  13.08 
890.73 

1088.1 
1305.3 
1542.1 
1798.7 
2075.1 
2371.2 
2687.0 
3022.6 
3377.9 
3752.9 
4147.7 

N = 5  

0.999 
.988 
.936 
.790 

Accuracy, A 
~~ 

N =  10 

1 .ooo 
0.999 
0.998 
0.994 
0.984 
0.963 
0.922 
0.852 
0.754 

~ 

~ 

N =  20 

1 .ooo 
1 .ooo 
1.000 
1 .ooo 
0.999 
0.999 
0.998 
0.996 
0.993 
0.989 
0.983 
0.974 
0.960 
0.94 1 
0.91  5 
0.882 
0.840 
0.789 
0.73 1 

. - .. 

N =  40 

1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
1 .ooo 
0.999 
0.999 
0.999 
0.998 
0.998 
0.997 
0.996 
0.995 
0.993 
0.99 1 
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Appendix B 

Numerical Results of Normal-Mode Synthesis 

Appendix B presents the numerical  results of the normal-mode-synthesis modeling  studies.  Each 
table  includes  a  problem  description for  the  tabulated  data. 
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Table B 1 -Normal-mode synthesis of a  uniform cantilevered beam modeled by the first i free-free 
normal modes  computed  from  a  source beam consisting of  5  finite elements. ' *:li- number 

1 ;  
6 

Frequency 
of  known 
solution 
(rad/sec) 

3.5 160 
~ 

22.034 
6  1.697 

120.90 
199.86 
298.56 

i = 3  

1.485 
22.10 

424.3 

Accuracy, A 

i = 5  

1.221 
1.236 

16.02 
246.2 

i=6 

1.115 
1.095 
1.088 
1.072 
9.329 

106.1 

Table B2-Normal-mode synthesis of a uniform cantilevered beam modeled by the first i free-free 
normal modes computed  from  a  source beam consisting of 10  finite elements. 

Mode 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Frequency 
of known 
solution 
(rad/sec) 

3.5  160 
22.034 
6  1.697 

120.90 
199.86 
298.56 
416.99 
555.16 
7  13.08 
890.73 

1088.1 

~~~ 

i = 3  

1.585 
21.83 

449.4 

i = 5  

1.192 
1.206 
1.236 

12.80 
187.6 

Accuracy, A 
________~ 

i = 7  

1.096 
1.095 
1.095 
1.100 
1.1  12 

10.26 
102.3 

~ i = 9  

1.064 
1.059 
1.056 
1.053 
1.05 1 
1.067 
1.040 
8.299 

62.67 

i =  11 

1.058 
1.052 
1.048 
1.044 
1.040 
1.035 
1.023 
0.9895 
0.9135 
5.894 

4 1.43 
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Table B3-Normal-mode synthesis  of  a  uniform cantilevered beam modeled by the first i free-free 
normal modes  computed  from  a  source beam consisting of 20 finite elements. 

Mode 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Frequency 
of known 
solution 
(rad/sec) 

3.5 160 
22.034 
61.697 

120.90 
199.86 
298.56 
416.99 
555.16 
713.08 
890.73 

1088.1 
1305.3 
1542.1 
1798.7 
2075.1 
2371.2 
2687.0 
3022.6 
3377.9 
3752.9 

~~ 

i = 3  

1.628 
21.69 

458.0 

i = 7  

1.147 
1.157 
1.167 
1.183 
1.210 
9.018 

1 17.0 

Accuracy, A 

i =  12 

1.069 
1.071 
1.073 
1.075 
1.077 
1.080 
1.083 
1.088 
1.095 
1.107 
6.41 9 

i =  17 

1.041 
1.041 
1.042 
1.042 
1.043 
1.043 
1.044 
1 .045 
1.046 
1.047 
1.048 
1.050 
1.053 
1.057 
1.063 
5.416 

29.13 

i =  21 

1.027 
1.027 
1.027 
1.027 
1.027 
1.027 
1.027 
1.027 
1.027 
1.027 
1.027 
1.027 
1.028 
1.028 
1.028 
1.029 
1.029 
1.030 
1.032 
3.872 
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Table  B4-Normd-mode  synthesis of a uniform cantilevered beam modeled  by  the  first i free-free 
normal  modes computed  from a source beam consisting of 40  finite  elements. 

Mode 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

" "~ ~ 

Frequency 
of known 
soh tion 
(rad/sec) 

~~ 
- 

3.5160 
22.034 
6 1.697 

120.90 
199.86 
298.56 
416.99 
555.16 
713.08 
890.73 

1088.1 
1305.3 
1542.1 
1798.7 
2075.1 
237 1.2 
2687.0 
3022.6 
3377.9 
3752.9 

., - ~~ . 

i = 3  
" . . 

1.619 
21.73 

456.3 

i = 7  

1.132 
1.139 
1.147 
1.162 
1.183 
9.455 

114.1 

Accuracy, A 

i =  12 

1.052 
1.052 
1.051 
1.054 
1.052 
1.053 
1.054 
1.056 
1.059 
1.066 
7.140 

i =  17 

1.031 
1.030 
1.029 
1.030 
1.027 
1.026 
1.025 
1.024 
1.022 
1.020 
1.018 
1.013 
1.007 
0.996 
0.98 1 
5.530 

24.1 1 

i =  22 

1.029 
1.027 
1.026 
1.028 
1.024 
1.023 
1.021 
1.020 
1.018 
1.016 
1.013 
1.008 
1.001 
0.990 
0.973 
0.949 
0.914 
0.868 
0.809 
1.034 
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Table BS-Normal-mode synthesis of a uniform cantilevered beam composed of three  identical 
substructures, each of which is modeled by the first i free-free modes  computed  from  a 40-finite- 

element source beam. 

Mode 
number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

- -__ 

Frequency 
of known 
solution 
(rad/sec) 

0.3906 
2.4482 
6.8552 

" - 

13.433 
22.206 
33.173 
46.332 
6 1.684 
79.23 1 
98.970 

120.90 
145.02 
171.34 
199.85 
230.56 
263.46 
298.56 
33  5.84 
375.32 
416.99 
__- 

i = 3  

1.231 
1.365 
1.754 

25.09 
114.7 
150.7 

Accuracy, A 

i =  5 
- 

1.1 13 
1.159 
1.277 
1.122 
1.189 
1.240 
1.134 
1.195 
1.262 

13.77 
94.62 

. ~- 

i = 7  

1.073 
1.099 
1.159 
1.063 
1.105 
1.146 
1.066 
1.1 10 
1.173 
1.127 
1.140 
1.154 
1.123 
1.138 
1.160 
9.990 

74.22 

~~ 

i =  12 

1.040 
1.047 
1.065 
1.026 
1.047 
1.075 
1.030 
1.049 
1.070 
1.030 
1.051 
1.079 
1.039 
1.055 
1.074 
1.038 
1.055 
1.080 
1.056 
1.063 
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Table B6-Normal-mode synthesis of three parallel beams fixed at  one end  and  mutually  connected 
at  their  other  ends. Each component beam is modeled  by the first 12 free-free modes  computed 

from  a 40-finite-element source beam. 

Mode number 
of single 

cantilever 

Frequency 
of known 
solution 
(rad/sec) 

3.5160 
22.034 
none 
none 

61.697 
none 
none 

1 20.90 
none 
none 

199.86 
none 
none 

298.56 
none 
none 

~ 

Mode number 
of three 
parallel 
beams 

1 
2 
2a 
2b 
3 
3a 
3b 
4 
4a 
4b 
5 
Sa 
5b 
6 
6a 
6b 

Computed 
natural 

Frequency 
(rad/sec) 

3.760 
23.60 
26.01 
26.01 
66.18 
70.82 
70.82 

129.9 
142.3 
142.3 
215.2 
231.9 
23 1.9 
322.3 
357.1 
357.1 

Accuracy, A 

1.069 
1.070 

1.073 

1.075 

1.077 

1.080 

Table B7-Nonnal-mode synthesis  of  a three-beam portal  frame, each component of which is 
modeled by the first 12 free-free modes computed  from  a 40-finite-element source beam. Known 
solutions are the eigenvalue results of a finite-element model of the  portal frame in which 40 bar 

elements represent each beam. 

Portal 

number 
I 1 ;  

46 

Mode 

antisymmetric 
symmetric 
antisymmetric 
symmetric 
antisymmetric 
symmetric 

Frequency 
of known 
s o h  tion 
(rad/sec) 

3.2035 
12.620 
20.621 
22.275 
44.794 
54.953 

Accuracy, A 

1.532 
0.573 
0.989 
1.037 
0.875 
1.004 
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